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of the TI-TII Transition in Liquid Helium 
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An amended pitchfork bifurcation is introduced to model recent experiments by 
Griswold and Tough on superfluid turbulence in liquid helium counterflow 
subject to strong external noise. We adopt the generalized white noise limit of 
Blankenship and Papanicolaou to take a short-correlation-time limit of the non- 
linear noise which enters into the model, and we implement this limit by means 
of the wideband perturbation expansion. Novel boundary conditions are applied 
to the resultant diffusion process in order to obtain behavior in qualitative 
agreement with the observations at low vortex line density. We are able to 
account for the sharp peak in probability observed experimentally at a small 
positive line density. The drift and diffusion of our diffusion process may be 
estimated experimentally; we describe how to do this. 
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1. I N T R O D U C T I O N  

In this paper we discuss in some detail a phenomenological model 
developed to describe the TI -TI I  transition between superfluid turbulent 
states of liquid helium counterflow in the presence of deliberately applied 
external noise. For  a broader description of this model as well as a descrip- 
tion of an earlier model for intrinsic fluctuations in superfluid turbulence, 
see the companion paper. ~ Experiments on the liquid helium system were 
performed by Don Griswold and Jim Tough at Ohio State University. (2) 

The experiments using external noise were a modification of earlier 
experiments performed by Griswold eta/. (3) in which no external noise was 
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applied. In both sets of experiments the chemical potential A# across the 
counterflow tube was measured as a function of the rate of heat flow ~) 
through the tube. A/~ is proportional to the vortex line density L in the 
counterflow tube. Even in the absence of deliberately applied noise, small 
fluctuations in the vortex line density were observed. Steady-state values of 
the vortex line density, the variance of fluctuations about these states, and 
the power of these fluctuations in a band of frequencies were all measured 
as a function of Q. 

We have developed a model for these measurements in the absence of 
deliberately applied external noise. (4~ This model assumes that the TI -TI I  
transition can be described as part of the unfolding of a pitchfork bifur- 
cation. We were able to account qualitatively for the measured steady 
states, the variance about those steady states, and the power in the 
fluctuations. 

Below we describe a more recently developed model for the 
experiments performed in the presence of deliberately applied external 
noise. The unfolding of the pitchfork bifurcation is still used, but we have 
to modify it in order to take into account the fact that the external noise 
brings global features of the state and parameter spaces into play. We first 
describe the model, which initially has two state variables. In order to 
proceed with the analysis, we take a short-correlation-time limit and reduce 
the model to only a single state variable. This reduction faces a technical 
difficulty because the applied noise enters into the model in a nonlinear 
way. However, we are able to take the generalized white noise limit of 
Blankenship and PapanicolaouJ 5~ This limit is implemented by means of 
the wideband perturbation expansion. ~6) In this way we obtain a reduced 
Fokker-Planck equation in a single state variable. We describe the 
"reinjection" boundary condition that has been assumed, and show how 
our model accounts for a somewhat mysterious feature of the experimental 
data: namely, that the external noise actually enhances the probability at 
low vortex line density. We finally show how the key quantities in this 
model may be measured experimentally. 

2. T H E  M O D I F I E D  P I T C H F O R K  M O D E L  

Figure 1 sketches the steady states of the imperfect pitchfork model in 
the neighborhood of the TI-TII  transition. The experimental coordinates 
(~), L 1/2) are shown in relation to the model control parameter 2 and state 
variable x. The two coordinate systems are related obliquely, with coor- 
dinate transformations given by 

x = L I/2 - s ( ~  + b (2.1a) 

2 = Q - ~)o (2.1b) 
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Fig. 1. The qualitative nature of oblique noise in relation to the experimental and normal 
form coordinate systems. Oblique noise is due to fluctuations of the heat current Q, which 
has an average value (~av. In the model the fluctuations are assumed to follow an Ornstein 
Uhlenbeck process z, which has a Gaussian stationary probability density sketched in the 
bottom diagram. 

Here s is the slope of the 2 axis relative to the experimental coordinate 
system, - b  is the L 1/2 intercept of the 2 axis, and Qo is the value of the 
heat current at the origin of the normal form coordinate system. 

Also indicated in Fig. 1 is the average value of the heat current Qav 
when fluctuations on the heat current are deliberately imposed. The extent 
of these fluctuations is suggested by the probability distribution sketched 
below. Geometrically, the fluctuating heat current can be thought of as 
carrying the system back and forth along the Q axis in the figure. While 
this effect is quite simple from the point of view of the experimental coor- 
dinates, we see that it is somewhat less trivial in the frame of reference of 
the model coordinates. The noise acts obliquely relative to the latter coor- 
dinate system, mixing values of x and 2. We shall therefore refer to it as 
"oblique noise." When this noise is transformed by Eq. (2.1), it will have a 
highly nonlinear character in the (2, x) coordinate system. This non- 
linearity makes the analysis of this problem very interesting from the point 
of view of stochastic methods. 

Formally, it will be very easy to introduce noise into the dynamical 
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equation for the state variable x. Let the random fluctuations in the heat 
current ~) be modeled by the Ornstein-Uhlenbeck process z. Then if the 
dynamical equations are expressed in terms of the experimental variables, 
the introduction of oblique noise corresponds to substituting for the 
variable 0 the expression Q,v + z. The state variable L m is not changed 
directly by the heat current fluctuations, and therefore the dependence of 
the dynamical equations on L m remains unchanged. Transforming 
according to Eq. (2.1), we find that for equations written in terms of x and 
2 we must make the substitutions 

2 ~ , ~ + z ,  x ~ x - s z  (2.2) 

The dynamical equation for the strong-noise case is based on the 
imperfect pitchfork bifurcation which we introduced previously. (4) 
However, we are now concerned with external noise which involves a large 
range of heat currents Q and spreads the probability distribution for the 
system over a wide interval in the domain of the state variable. The 
dynamics is no longer dependent on only the local character of the TI-TII 
transition; global aspects of the system now come into play. While our 
dynamical equation is still based on the pitchfork bifurcation, it is amended 
in several ways. This modified dynamical equation has the form 

2 = k(L 1/2) re(Z) p(x, 2) (2.3) 

Consider the term p(x, 2), the universal unfolding of the pitchfork bifur- 
cation. We now write this as 

p(x, 2) =/~o +/~1 '~x Jr- f12 x2 "b f13 X3 (2.4) 

As compared with the unfolding given previously, (4) we have introduced 
two additional coefficients:/~0 and/~3. One degree of freedom is introduced 
to allow the relative scaling of the 2 and x axis to be arbitrary; this will 
permit us to scale these axis with the same units as are used to scale Q and 
L 1/2. The second degree of freedom allows us to scale the relaxation time 
[~xp(Xss, 2)]-1 without changing the steady states. Here Xss is a solution 
of p(Xss, 2)= 0, and is therefore a steady state of (2.3). 

The factor k(L m) is the mechanism by which we introduce the 
laminar steady state and the unstable steady state that must exist between 
the turbulent and laminar steady states. It is known from experiment that 
the counterflow system can be maintained in a metastable laminar state 
(corresponding to zero vortex line density) well past the critical heat 
current of the TI-TII transition. The corresponding steady state in our 
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model must come from a zero of k(L 1/2) m(2)p(x, 2) when L1/z=0; this 
zero is supplied by k(LX/2), which has the form 

with the Lorentzian 

k(L m) = 1 - Lor(L m) (2.5) 

a 

L~ = 1 + (L m - L~/2)2/W ~ 

The constants a, w, and L~/2 are chosen so that Lor(Ll/2)= 1 has two 
roots, one at L m = 0 and the other at L m =  2L~/2. For L m sufficiently 
large, k(L ~/2) approaches 1 asymptotically, leaving the dynamics in (2.3) 
dependent on m(2) p(x, 2). This latter expression is positive for values of x 
less than that of the turbulent steady states, reflecting the fact that the 
steady states pull trajectories up toward them. The zero at L m =  2L~/2= 
L~/2 corresponds to an unstable steady state. For Lm>L~u/2 we have 
k(Lm)>O, giving a drift that is positive and directed away from the 
unstable steady state. For L m < L~u/2 we have k(L m) < 0, and the drift pulls 
trajectories toward the laminar state at L~/:=O. Since k(L m) is not a 
function of 2, its zeros at t 1 / 2 -  0 and L m -  1/2 - - L ,  are not dependent on 2 
either. This lack of dependence on 2 is obviously appropriate for the 
laminar state, which corresponds to a state of zero vortex line density 
regardless of Q, so long as it exists. It should also be a fair approximation 
for the unstable steady state for the following reason. As Q increases from 
the critical heat current Q1 at the initial bifurcation to turbulence, the 
branch of unstable steady states emanating from the saddle-node bifur- 
cation initially curves down toward lower values of L v2. For increasing 
the turbulent steady state becomes more stable, and it seems natural to 
assume that the curve of unstable steady states approaches lower values 
of L ~/z. However, the metastable laminar state continues to exist, so the 
curve of unstable states must approach the axis L 1/2= 0 with decreasing 
slope, and eventually run almost parallel to it. The additional roots 
corresponding to the metastable laminar state and the associated unstable 
steady state are also shown in Fig. 1. 

Our introduction of a factor m(2) is motivated by the measured 
relaxation times to the turbulent steady states of the counterflow system in 
the neighborhood of the TI-TII  transition (ref. 7, Fig. 64). These 
measurements were taken in the absence of external noise, yet we will see 
that they are important in our understanding of the system in the presence 
of external noise. In order to introduce the qualitative character of these 
relaxation times into our model, the factor m(2) must bias the system 
toward greater relaxation times as 2 increases, m(2) has the general form 

m(2) = 1 + %2 + c~222 (2.6) 
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Below, we show a calculation for a general quadratic m(2) and choose for 
the model a parabola that has value 1 at 2 = 0  (Q = 118.78) and reaches a 
minimum of 0 at 2 =  161.22 (0=280) .  The model relaxation times are 
proportional to m(2) -1, and will ultimately increases as m(2)+0. Unfor- 
tunately, with a simple quadratic m()~), we cannot obtain good quantitative 
agreement between the model relaxation times and the measured ones. 
Nevertheless, the positive bias in the relaxation time enables us to find in 
the model the noisy hysteresis curve which is an important result of 
Griswold and Tough's experiments. Without the factor m(2) the system 
s = k (L  1/2) p(x,  )~) does not display this feature. 

3. W I D E  BAND PERTURBATION EXPANSION 

After introducing oblique noise into our dynamical equation by sub- 
stituting the expressions given in (2.2) for x and 2 in (2.3), we obtain a new 
set of dynamical equations in the two state variables x and z. These 
equations have the form 

d x = H ( x ,  z) dt (3.1a) 

dz = - ? z  dt + a dW(t)  (3.1b) 

where 

H(x,z)  = bo + blz  + b222 + b3 z3 + b4 z4 + bsz  5 (3.1c) 

and the bg are functions of x: bg = bi(x), 1 ~ i ~ 5. In general it is difficult to 
make progress in the analysis of a stochastic differential equation, such as 
(3.1), in two state variables. For example, we would like to solve for the 
stationary probability distribution, but this is in general not possible for a 
two-variable system. However, the stationary probability distribution can 
always be found, when it exists, for a stochastic differential equation in a 
single state variable. 

Fortunately, the system (3.1) can be reduced to a single state variable 
by the application of a short-correlation-time limit. We use the generalized 
white noise limit of Blankenship and Papanicolaou. (5) It is closely related 
to the ordinary white noise limit; however, it is more general and can be 
applied to the analysis of nonlinear noise. The procedure by which we take 
this limit is called the "wide band perturbation expansion" and was 
developed by Horsthemke and LefeverJ 6) 

The qualitative ideas behind the generalized limit are the following. A 
short-correlation-time limit is taken which, if the amplitude were held con- 
stant, would lead to no noise at all. To keep the variance in response to the 
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noise nonzero, the amplitude of the noise must be scaled up appropriately 
as the short-correlation-time limit is taken. Finally, we have the step that 
generalizes the usual white noise limit: the mean value of the noise must be 
subtracted out before the amplitude is scaled up, keeping the variance of 
the system in response to the noise finite. In the case of a linear dependence 
on the Ornstein-Uhlenbeck noise z, the mean value is zero and the last 
step would be unnecessary. Applying all of these considerations, we obtain 
the following pair process, depending on the small parameter e: 

dx = Ez[H(x ,  z)] dt + 1  {H(x,  z ) -  Ez[H(x ,  z)]} dt (3.2a) 

1 1 
dz = --s 7z dt + - a d W  (3.2b) 

g-  8 

It is convenient to define the renormalized functions F(x) and G(x, z) 
in such a way that Ez[G(x ,z )]  =0:  

F(x) = E~[ H(x,  z)] (3.3a) 

6(x ,  z) = H(x,  z) - E~E H(x,  z)] (3.3b) 

The Fokker-Planck equation associated with the process (3.2) has the 
form 

I F 1 ) 
r -~ ' + - F z + F 3 e  P ( x , z )  (3.4) 

where 

1 a2 r (3.5) F1 = - 7  0z z + 

F 2 = -r z) (3.6) 

F 3 = -OxF(x )  (3.7) 

Note that F 1 is the Fokker-Planck operator for the Ornstein-Uhlenbeck 
process and involves the variable z alone. F3 involves x alone and F2 
contains the cross terms. Now we expand the probability density as a series 
of terms in the smallness parameter e: 

P ( x , z , t ) = P o ( x , z , t ) + e P l ( X , Z , t ) + e 2 p 2 ( x , z , t ) +  ... (3.8) 

Introducing the expansion (3.8) into the Fokker-Planck equation (3.4) and 
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equating terms of the same order in e, we get an infinite hierarchy of 
equations: 

~--2: 0 = F i P o  (3.9) 

e 1: O = F 1 P l + F : p  ~ (3.10) 

eo: OtPo=F1P2+F2PiWF3p  ~ (3.11) 

e~: ~?tPk=F1Pk+2+F2Pk+I+F3Pk,  k>~l (3.12) 

Equation (3.9) implies that Po solves the time-independent Fokker-Planck 
equation for the Ornstein-Uhlenbeck process, and therefore the z depen- 
dence of P0 is just a Gaussian stationary probability density. We can write 
Po in the separated form 

/ 'o(X,  z, t) = ro(x, t) pAz) (3.13) 

Physically this means that in the limit of zero correlation time the state of 
the noise process and the state of the system become independent. Notice 
that we do not know the form for ro(x, t); this will be obtained later in the 
analysis of order e ~ 

For  the higher order terms we shall define 

Pk(x, z, t) = rk(x, z, t) p,(z), k >1 1 (3.14) 

This definition can always be made, since p,(z) is an everywhere positive 
function. Note that for k >t O, rk(x, z, t) depends in general on z. 

Now we go on to order e -1, where we must solve (3.10). A simple 
calculation shows that the solvability condition is automatically satisfied. 
We can therefore solve the order e i equation, which may be rewritten as 

F ~- r 1 = OxG(x, z) ro(x, t) (3 .15)  

where F~- is the adjoint of F 1 �9 

F~- = 7z c~ z + 1 a2 c~z (3.16) 

Equation (3.15) is one of the two important results we need. It will be used 
to solve for r 1 in terms of ro, and close the reduced Fokker-Planck 
equation for ro. To obtain this latter equation, we must go on to order eo. 

The solvability condition for order eo turns out to be 

f 
+ ~ 3  

0 =  ps(z ) (Otro-F2r l -F3ro)dz  (3.17) 
oo 
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This is the second important result we need. We use (3.15) to solve for rl in 
terms of ro and then insert the result in (3.17). After carrying out the 
integration, we then cast (3.17) in the form of a Fokker-Planck equation 
for ro. 

After a substantial calculation, we finally have for the reduced 
Fokker-Planck equation: 

1 2 
~,ro = -0x[ fd(x)  +f.(x) + f , ( x ) ]  ro +~ Oxxg~ro (3.18) 

where 

"fa(x) = k (L  1/2) m(2) p(x, ~) (3.19) 

f, ,(x) = bz(x) v + 3bn(x) v 2 (3.20) 

1 0 f , ( x )  =-~ gi x g, (3.21) 

a n d  

g2 = 1 (2vZb~ + 12vZb, b3 + 2v2b2 + 60v3b, b5 
7 

+ 22v3b3: + 24v3b264 + 260v4b3b5 

+ 84vab] + 898vSb~) (3.22) 

The term fd is simply the deterministic dynamics at heat current ~, the 
average value of 2. The second term f ,  is a systematic effect due to the 
noise which we separated from the diffusion term before we took the short- 
correlation-time limit (3.2). It is an effect due to the nonlinear nature of the 
noise; no similar term appears on taking the white noise limit of a linear 
noise process. The third component of the drift is f t ,  which has the form of 
a noise-induced drift due to the diffusion g2. This is the same noise-induced 
drift that appears in the Fokker-Planck equation written down for a 
Stratonovich stochastic differential equation. It represents the first correc- 
tion taking into account the finite correlation time of the noise. However, 
unlike the result for linear noise, we see that f~ and g~ are both propor- 
tional to 7-~- The finite correlation time of the original noise process 
appears explicitly in the reduced Fokker-Planck equation. 

The reduced Fokker-Planck equation (3.18) is not yet a satisfactory 
model for the oblique noise process because the unstable steady state Llu/2 is 
a natural boundary. L 1/2 is a natural boundary because it is a root of 
k ( L m ) ,  which is itself a factor of both the drift and diffusion in Eq. (3.18). 
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Therefore both the drift and diffusion go to zero at  Llu/2; realizations will 
not be able to pass from one side of Llu/2 to the other, and the state space is 
partitioned into two pieces. However, in the physical system the unstable 
steady state does not represent an absolute barrier. Certainly it will not lie 
precisely parallel to the Q axis, so that it would be possible for the oblique 
noise to take the system from one side of L~u/2 to the other. In addition, we 
know that internal fluctuations are present: this would also allow 
realizations to cross the unstable state. 

A way to prevent L1,/2 from becoming an absolute barrier in the model 
is to add a term into the diffusion which does not go to zero with k(Lm).  It 
suffices to introduce an independent additive noise tr 2. The reduced 
Fokker-Planck equation for the stationary probability density then 
becomes 

1 
0 = -a~[fa(x)  + f . ( x ) + f l ( x ) ]  ro +-~ ax~[g~(x)+ G 2] ro (3.23) 

4. T H E  R E I N J E C T I O N  P R O B A B I L I T Y  D E N S I T Y  

Griswold and Tough made careful measurements of the probability 
density close to the regime of zero line density in the presence of oblique 
noise. They found that the probability always decreases to zero at the 
laminar state, even though in many cases it reaches a very sharp maximum 
at a low vortex line density very close to the laminar state. We are faced 
with some difficulty in reconciling this result with the knowledge that the 
laminar state is metastable and the nature of the external noise. This dif- 
ficulty is due to the fact that random variations of ~) in the laminar state 
just take the system from one (meta) stable state to another. Without some 
additional feature in the dynamics, it is hard to see how the laminar state is 
destabilized. The physical basis for the instability of the laminar state in the 
presence of moderate fluctuations in the heat current is unknown. 

From the point of view of our phenomenological model, however, 
there is only one way to accomplish the instability and retain our inter- 
pretation of the laminar state as corresponding to zero integrated vortex 
line density between the two ends of the flow tube. Once a realization 
reaches the laminar state L1/2= O, which is a boundary of the state space, it 
must be reinjected elsewhere in the state space. The simplest possibility for 
the purpose of our model is that the probability is sent to the other boun- 
dary of the state space, at some positive vortex l ine  density. A possible 
physical interpretation is that a new dynamical mechanism comes into play 
when the counterflow system approaches the laminar state too closely. This 
new mechanism generates vortex line density on a short time scale c o m -  
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pared to the evolution of the probability density in the interior of the state 
space. 

We therefore seek to construct a diffusion process with the following 
boundary conditions. When the sample paths reach the boundary at 
L1/2=0, corresponding to the stable laminar steady state, they are 
immediately reinjected into the state space at the boundary L1/2=c, 
corresponding to the arbitrary upper limit of vortex line density. When tra- 
jectories reach the boundary at L1/2= c, they merely reflect off the boun- 
dary. These boundary conditions are depicted in Fig. 2, and we shall now 
find the formula for the corresponding stationary probability density. This 
problem is a limiting case of a random process discussed by Karlin and 
Taylor. (s) We begin by describing the situation that they consider. 

Kartin and Taylor analyze the "instantaneous return process," a dif- 
fusion process whose state space is the interval a ~ ~ ~< b with state variable 
~. Whenever a sample path reaches either boundary it instantaneously 
returns to its starting point Xoe (a, b). The stationary probability density 
for this process is shown to be given by 

~q(Xo, ~) (4.1) 
= ,7)  

where the Green function if(x, 4) is given by 

~'(q> (x, ~) when ~ >~x (4.2) 
fC(x' ~) = l~<(x, ~) when ~ < x  

LI/2 

\ 
0 

b 

Fig. 2. Sample paths of the model diffusion process for reinjection boundary conditions. The 
abscissa is time and the ordinate shows the state space [0, c] of the diffusion process. (i) The 
boundary L~/2=0 is the reinjection boundary. Once a realization attains L m = 0  it is 
immediately reintroduced at L 1/2= c. (ii) The boundary L 1/2 is a reflection boundary. Sample 
paths that would otherwise cross the boundary are reflected as if by a mirror. 
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with 

IS(x) - S(a)]  [S(b) - S({)]  1 
ff>(x, 4 ) = 2  S(b)-S(a) a2({) s({) (4.3) 

[S(b) - S(x)]  ES(r - S(a)]  1 
fr (x, { ) = 2  S(b)-S(a) ~2({) s({ ) (4.4) 

and 

S(x) fx = s(~)d{ (4.5) 

f r~ 2f(.)  , 
s ( r  ~ - j  g2---~a~/; (4.6) 

Here f(x) denotes the drift and g2(x) denotes the diffusion of this random 
process. S(x) and s({) are deliberately defined as indefinite integrals. 

We focus on the probability density for { < Xo. This is given by 

~r (Xo. ~) 
b ~<(~) ~o~r Ixo~C>(Xo,~)d~ 

(4.7) 

In the limit as x 0 T b this density converges to the one desired for reinjec- 
tion boundary conditions. When realizations reach the left-hand endpoint a 
( = 0 )  they are instantaneously returned to the right-hand endpoint b ( =  c). 
Suppose now that Xo = b - e, where e ~ 1, and examine the order in e of the 
two integrals in the denominator of (4.7). For  the integral over if< we have 

f]-~f~<(b_g,~l)&l=i]-*drl[eS,(b)2S(q)-S(a) 1 
s(b) S(a) ~2(~) s(~) ~- O(e2)] 

(4.8) 

and we see that this is of order e. Now consider the integral over if> �9 

f~ (b  [ S ( b  - ~) - S(a)] I S ( b )  - S(~/) ] 1 
~>(b-~,~)a .=j  an2 

- ~  b ~ S ( b ) - S ( a )  a2(,) s(,) 
(4.9) 

But since b - e ~< r/~< b we have 

S(b)-S(q)=(b-~l)S'(b)+O((b-q)Z)=o(e) (4.10) 

We see that in the expansion of (4.9) we will have one order of g from the 
integrand and one order from the range of integration; therefore this 
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integral is of order ~2. We also have that f~< is itself of order e. Then the 
ratio (4.7) is finite in the limit as e ~ 0, and in the denominator the integral 
over fr dominates the integral over fr We have for the stationary 
probability density Ps of our reinjection process 

4) , s ( o )  
P,(r = lira S~_, (4.11) 

where X is the normalization constant. Note that this result does have the 
general form for the stationary probability density of a diffusion process 
with nonzero probability current. (6) The result of (4.11) was integrated 
numerically to obtain the probability distributions and bifurcation 
diagrams for the model that will be compared in the next section with the 
experimental results. 

5. M O D E L  R E S U L T S  

Figure 3 shows a "bifurcation diagram" generated by the model. On 
the ordinate is the state variable for the noisy system: the extrema of the 
probability distributions ro(x) computed from the model Fokker-Planck 
equation (3.23). On the abscissa is the control parameter 0- For a given 
value of the 0, x can be regarded as a renormalized vortex line density 
L1/2; recall (2.1a). The stationary probability distributions are given by 
formula (4.11), taking into account reinjection boundary conditions 
as discussed" above. The functions f and g2 introduced in (4.6) are 
f ( x )  = fd(x) + fn(x) + f l (x)  and g Z ( x )  = g~(x) + a2i . The open circles in 
Fig. 3 correspond to maxima of the stationary probability distribution and 
the solid circles correspond to minima. The solid line drawn through the 
open circles and the dashed line drawn through the solid circles are meant 
to suggest the locus of extrema. Also shown as a solid line are the steady 
states of the model (2.3) in the absence of the noise term z. Values of model 
parameters used to construct this figure are given in the caption to Fig. 3. 

Figure 3 may be compared in a preliminary way with the experimental 
results from Griswold and Tough (2) reproduced in Fig. 4. The square roots 
of the vortex line densities at which extrema appear in experimentally con- 
structed probability distributions are plotted on the vertical axis. Here Llm/2 
is the vortex line density associated with an extremum, and d ( = 132/tin) is 
the diameter of the flow tube. On the abscissa is ~, the heat current nor- 
malized by its value at the paracritical point, (4) 121/xW. The comparison 
between Fig. 3 and 4 is not strict, however. The probability densities shown 
in Fig. 3 were constructed as a function of L m, with the extrema measured 
from these. In contrast, the experimental probability densities associated 
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Fig. 3. Bifurcation diagrams constructed from the extrema of model probability densities. 
This figure was constructed with the following model parameter values. Oblique coordinate 
system parameters are Q0=118.78, L~/2=26.717, s=0.3529.  Pitchfork parameter values 
are /~0=0.6687, /~1=0.375, /~2=0.5887, /~3=0.1409. The m(2) parameter values are 
% = 1.2405 x 10 2, ~1 = 3.8474 x 10 5. The k(L u2) parameter values are a = 1.0025, w = 20, 
and L~/2 = 1. Noise parameters are 7 = 10, cr2/27 = 35 and ~r~ = 100. 
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Modified Pitchfork Bifurcation 1203 

with Fig. 4 were constructed as a function of L; extrema were found from 
these and plotted as a function of L 1/2. These differences taken into 
account, we note that the locus of extrema in the model has the same 
hysteresis-curve character as seen in the experimental results of Fig. 4. This 
is not obtained in the absence of the factor m(2). We find especially 
suggestive the fact that the model reproduces the curve of maxima in the 
vortex line density which runs nearly parallel to the (~ axis for values of (~ 
under 1.6 in Fig. 4. We offer an explanation for this feature of the 
experimental data in the next section. 

6. P R O B A B I L I T Y  D E N S I T Y  NEAR U N S T A B L E  S T E A D Y  STATE 

The lower branch of the hysteresis curve in Fig. 4 runs nearly parallel 
to the Q axis. It corresponds to a curve of sharp peaks in the probability 
distribution at low vortex line density. This result may seem at first thought 
counterintuitive. One might think that "noise" makes things more random 
and thus, perhaps, more turbulent. Then we might expect enhanced 
probability at high vortex line density. However, the explanation for the 
peak in probability at low vortex line density is quite simple if we think in 
terms of diffusion processes. 

Let us gain a deeper picture of what oblique noise does. Remember 
that we assumed that the correlation time of the oblique noise was short 
compared with the typical time scale on which the vortex line density L 1/2 

evolves. Looking back at Fig. 1, we imagine that the system has some par- 
ticular value of L ~/2 but that the heat current Q is changing rapidly and 
randomly. The noise is then averaging the vector field of the deterministic 
system along some horizontal interval in the figure, at a particular value of 
the ordinate. 

When L ~/~ is small the vector fields in this interval are all fairly similar. 
The systems which are averaged together remain close to the laminar or 
unstable steady states, and their drifts (that is, their vector fields, which 
may point toward increasing of decreasing L ~/2) are weak. The drift 
averaged over the horizontal interval then will also be weak, and the 
diffusion of the noisy system, which depends essentially on the variance of 
the drifts of the averaged systems, will likewise be weak. At the laminar and 
unstable steady states themselves the oblique noise actually takes us back 
and forth along the line of steady states. Here all the systems being 
averaged together have zero drift, and therefore the drift and diffusion 
contributed by oblique noise is zero. Only the independent noise, which we 
imagine is relatively weak, keeps these deterministic steady states from also 
being steady states of the reduced Fokker-Planck equation. 

On the other hand, at larger values of L ~/2 the vector fields are much 
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stronger. At a particular value of L 1/2, oblique noise may take us from a 
point on Fig. 1 close to a turbulent steady state to a point far from one. 
The drift at the first point would then be weak, and the drift at the second 
point strong. So the variance of the drifts is also great. Therefore at large 
L 1/2 the drift and diffusion terms in the reduced Fokker-Planck equation 
are large. 

For  diffusion processes in general, probability tends to concentrate 
near regions of low diffusion and flow away from regions of high diffusion, 
unless there is a strong drift which repels realizations from the region of 
low diffusion. In physical terms we may imagine that oblique noise mixes 
together states where the vortex line density is increasing and states where 
it is decreasing. However, if the system happens to visit a state where the 
total vortex line density is small, it lingers. In such a state the effect of the 
oblique noise is just to mix it with other states of low vortex line density. 
On the average, then, as we increase the strength of oblique noise, we visit 
states of low vortex line density more often and the time spent lingering 
there increases. The probability density profiles show an enhancement at 
low values of vortex lines density. 

7. E X P E R I M E N T A L  M E A S U R E M E N T  OF DRIFT A N D  
D IFFUSION 

We shall now describe how to compute finite-difference 
approximations to the drift f ( L  1/2) and the diffusion gR(L1/2). These two 
functions are central to the analysis of a diffusion process and make direct 
contact with the analysis presented in this paper. Suppose that every time a 
sample path reaches a certain interval of vortex line density L1/2(to) 
(L 1/2 - -  A, L 1/2 + z] ) with A small, the density that occurs an interval of time 
7: later is recorded. If this is done for a long time series, so that we have 
many samples that start in the interval of interest, then we could estimate 
the quantities 

f~(L 1/2) = 7:-1 ( L1/2( to .+. 7:) _ L1/2( to) ) (7.1) 

g~(L1/2) = 7: 1( [LV2(to + 7:) _ L,/Z(to)]2) (7.2) 

where the average ( - - - )  is taken over realizations for which L1/Z(to)e 
(L  1/2 -- A, L 1/2 + A ). For a fixed time 7:, short compared to the time scales in 
the interior of the diffusion process, the functionsf~ and g~ could be plotted 
as a function of L~/2. 

The drift and diffusion not only characterize the random process in the 
interior of the state space, but will also give some information on the 
nature of the boundary conditions. Thus, for the case of natural boun- 



Modified Pitchfork Bifurcation 1205 

daries, where realizations do not actually reach the boundaries, (6'8) both 
the drift and diffusion will tend to zero as the boundary is approached. For 
the present case of a reinjection boundary we would first expect f ,  and g~ to 
decrease as the laminar boundary is approached, because the laminar state 
is a steady state. However, sufficiently close to the boundary, the finite size 
of r in the finite-difference approximation will begin to become important. 
Then f~ and g~ will begin to increase as the rapid jump away from the 
boundary begins to influence the average. Finally, very close to the boun- 
dary, the contribution from reinjection will dominate the averages, and f~ 
and g~ are expected to approach finite limits whose ratio should charac- 
terize the distribution according to which realizations are reinjected into 
the state space. 

The finite-difference approximations to the drift and diffusion could 
also be used to find the location of the unstable steady state. Here we 
expect f~ to decrease to zero while g~ approaches a finite constant charac- 
teristic of the independent noise. These finite-difference approximations can 
also serve as a check on the fundamental assumption that a diffusion 
process describes the evolution of the dynamics in the interior of the state 
space. The estimates of f~ and g~ should be independent of ~, for 
sufficiently small, everywhere in the interior of the state space. 

8. C O N C L U S I O N  

We have introduced a model for superfluid turbulence in the liquid 
helium counterflow system and in the presence of external noise. The model 
is based on that previously introduced to describe intrinsic fluctuations in 
the counterflow system, but has been modified in order to describe the 
effects of the external noise. These modifications take into account the fact 
the strong external noise brings global features of the state and parameter 
spaces into play. The analysis of this model involves a short-correlation- 
time limit of a nonlinear function of the Ornstein-Uhlenbeck process. We 
use the generalized white noise limit of Blankenship and Papanicolaou, (s) 
implemented by means of the wideband perturbation expansion. (6) We also 
have developed a formula for the probability density corresponding to 
"reinjection" boundary conditions. 

Our model offers a simple explanation for the experimental obser- 
vation of a sharp peak in the probability distribution corresponding to low 
vortex line density. We suggest that this peak is associated with the 
unstable steady state which must lie between the stable laminar and 
turbulent steady states. Probability concentrates near this unstable state 
because there the effective diffusion coefficient due to the external noise is 
very small. 

822/54/5-6-7 
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